| 0.11 | <u> </u> | L - | 1 | • | |---|--|-----|--|---| | Oil and
Gas:
Overarchi
ng Issues | Lease and permit incentives for improving air quality on public lands | Y | | Y-CE said could look at emissions, not cost (8/06) | | | Economic-Incentives Based Emission Trading System (EBETS) | Y | | | | | Tax or Economic Development
Incentives for Environmental
Mitigation | Y | | | | | Voluntary Partnerships and Pay-back
Incentives: Four Corners Innovation
Technology and Best Energy-
Environment Management Practices
(IBEMP) | Y | | | | Oil and
Gas:
Turbines | Upgrade Existing Turbines to
Improved Combustion Controls
(Emulating Dry LoNOx Technology)
where feasible | Y | | | | Oil and
Gas: | Industry Collaboration (new title) | Y | | Y-CE to integrate updated EI (8/06) | | | Install Electric Compression | Y | See Also Power
Plants-
Overarching/Crossov
er | Y - CE will look @ emission
benes, not cost (8/06) | | engines) | Optimization/Centralization | Y | | | | | Follow EPA New Source Performance Standards (NSPS) for existing engines | Y | | Y-CE to assess AQ benefits in 4C (8/06) | | | Adherence to Manufacturers' Operation and Maintenance Requirements | Y | | | | | Use of SCR for NOx control on lean burn engines | Y | | Recommended 12/11 | | | Use of NSCR / 3-way Catalysts and Air/Fuel Ratio Controllers on Stoiciometric Engines | Y | | Recommended 12/11 | | | Use of Oxidation Catalysts and
Air/Fuel Ratio Controllers on Lean
Burn Engines | Y | | Recommended 12/11 | | Install Lean Burn Engines | Y | | Recommended 12/11 Perhaps modify mit/op to incorporate CE support re: rich v lean burn? Need clarification- mean change out small rich burn with larger lean burn?? Or limit horsepower change to above 300hp for lean burn. | |--|-----|---|--| | Interim Emissions Recommendations for Stationary RICE | Y | | Recommended 12/11 (Quantify NOx and ammonia emissions) Ammonia may wait until KSU study completed | | Emission limit on existing engines (1g/hp hr and 2g/hp hr) | N | Will highlight the emissions reductions in the other mitigation option drafts but will not be treated as a separate category. Depending upon the draft mitigation options, this item may remain separate but this will be determined later. | | | Replacing ignition systems to decrease false starts | e N | This option is generally covered in the Operation and Maintenance mitigation option. See Adherence to Manufacturers' Operation and Maintenance Requirements above. Insignificant air quality benefit. | | | Replace piston rod packing (pumps) | N | This was deleted as a separate item and instead will be included with O&M section; however it wasn't included in this section | | | | Minimize (control?) engine blow
downs | N | This was deleted by
the drafting team
since it is not an
emission control
technology | | |--------------------------------|---|---|---|---| | | Utilize exhaust gas analyzers to adjust
AFR | N | This was included in
the Oxidation
Catalysts and AFRC
on Lean Burn
Engines option. | | | | Smart AFRC (air-fuel-ratio-controller) | N | Included in the other AFRC options | | | | Replace gas engine starters with electric air compressors | N | This was deleted by
the drafting team
since it is not an
engine emission
control technology | | | | Provide training for field personnel on engine maintenance with regard to AQ considerations | | Jen to add expansion
sentence into OM
Mit/Opt Paper | | | | Next Generation Stationary RICE
Control Technologies | Y | | Recommended conf call 12/12 | | Oil and
Gas: Rig
Engines | Diesel Fuel Emulsions | Y | | | | | Natural Gas Fired Rig Engines | Y | | | | | Selective Catalytic Reduction (SCR) | Y | | Y-NOx + Ammonia on
visibility- CE said can look at
NOx 98/06) | | | Selective Non-Catalytic Reduction (SNCR) | Y | | Recommended 12/11 | | | Implementation of EPA's Non Road
Diesel Engine Rule – Tier 2 through
Tier 4 standards | Y | | Y- CE can calc emissions from T2-4 stds (8/06) | | | Interim Emissions Recommendations for Drill Rigs | Y | | Recommended 12/11 What types of assumptions needed for participation in voluntary program? Difficult to quantify based on option alone. #all new rigs? #for all rigs? | | | Analysis of all drill rigs – replace the dirtiest 20% | N | Will reference in Tier 2-4 Mitigation Option Development, but also move to overarching discussion to determine the priority on rig engine reductions | | |---------------------------------------|--|---|--|---| | | Electric powered drill rig | N | Not selected by the drafting team due to low feasibility around availability of electricity | | | | Various Diesel Controls, including: Duel fuel (or Bi-fuel) diesel and natural gas Bio diesel PM Traps Free gas recirculation Fuel Additives Liquid Combustion Catalyst Lean NOx Catalyst Low NOx ECM Exhaust Gas Recirculation (EGR) | Y | These are all combined into the Diesel Control paper – cross over to Other Sources? | | | Oil and
Gas:
Mobile
and Non- | Fugitive dust control plans for dirt/gavel road and land clearing | Y | See also Other
Sources- Fugitive
Dust Mitigation Plan
(Coming Soon) | | | Road | Use produced water for dust reduction | Y | (coming score) | | | | Pave roads to mitigate dust | Y | | | | | Automation of wells to reduce truck traffic | Y | See also Optimization
and Automation in
E&P Dehydrators
Below | Y-CE look @ elec benes;
feasible to assess EF data for
unpaved roads (8/06) | | | Reduced Vehicular Dust Production
by Enforcing Speed Limits | Y | Crossover to Other
Sources- Phased
Construction /
Operations? | Y- CE to give direct emissions, no cost (8/06) | | | Reduced Truck Traffic by
Centralizing Produced Water Storage
Facilities | Y | | CE noted cost/econ beyond resources | | | Reduced Vehicular Dust Production
by Covering Lease Roads with Rock
or Gravel | Y | | Y-emissions from dirt v gravel,
no cost (8/06) | | | Reduced Truck Traffic by Efficiently
Routing Produced Water Disposal
Trucks | Y | | Y - CE to give direct emissions, | | | Use Alternative Fuels and Maximize Fuel Efficiency to Control Combustion Engine Emissions | Y | | | |----------------------------------|---|---------------------------|--|--| | | Utilize Exhaust Emission Control
Devices for Combustion Engine
Emission Controls | Y | | | | | Exhaust Engine Testing for
Combustion Engine Emission
Controls | Y | | | | | Reduce Trucking Traffic in the Four Corners Region | Y | Tagged for
Cum/Effects Group | | | Gas: E&P | BMP: close hatches, maintain seals, enardo valves | <mark>Into V5</mark>
Y | | | | Tanks | Install VRU | <mark>Into V5</mark>
Y | | | | | Inert Gas Blanket | <mark>Into V5</mark>
Y | | | | | Install Flares | On Hold | Myke Lane is researching viability, don't have much flash at E&P sites, more viable at CS and GP (Still researching) | | | | Floating Roof Tanks | <mark>Into V5</mark>
Y | | | | | Mufflers | N | Does not apply to AQ | | | | Centralized Collection for Existing Sources | N | Not feasible for retrofit in SJB | | | | Centralized Collection for New
Sources | Coming | Walt will write for
new development,
Christi asst.
Coming 12/15ish | | | Oil and
Gas: E&P
Dehydrato | Control glycol pump rates | Coming | Dave Brown will write Coming 12/15ish | | | rs/Separat
ors/
Heaters | Replace high bleed pneumatics w/ low bleed pneumatics Optimization and automation | Coming | Myke LaneDavid Bays will check – see if Myke wants to add to Bill H's paper on air actuated below Coming-Myke will collab w/Kellie anticipate 12/15ish D Brown: add in something on this in paper above See also Automation of wells to reduce truck traffic in Mobile | | |-------------------------------|--|---------------------------|--|---| | | Low/Ultra low NOx burners | Coming | and Nonroad above Brit Benko D Brown will check | | | | "Quantum Leap" dehy units | Y | | | | | Insulated Vessels | <mark>Into V5</mark>
Y | | | | | Combustors for still vents | Coming | Dave Brown
Coming 12/15ish | | | | VRU | Coming | Dave Brown
Coming 12/15ish | | | | Desiccant Dehys | Y | | | | | Centralized Dehys | N | Already or will be incorporated in other papers on centralization (Jen will check) | | | Oil and
Gas: E&P
Wells | Flareless Completions (Green Completions) | Y | · | | | | Plunger Lifts | Coming | Dave Brown
Coming 12/15ish | | | | Plunger optimization | Coming | Dave Brown –
combined w/ above
Coming 12/15ish | | | | Comparing/trade-offs between flaring and venting | Yes | | | | Oil and
Gas: E&P | Air actuated pneumatics | <mark>Into V5</mark>
Y | | _ | ## O&G Section Mitigation Option Written (Y/N) Tagged for CE? If No, Rationale | s/ | Optical imaging to detect leaks | Y | | | |-------------------------|---|---------------------------|--|--| | Controller s/ Fugitives | Electrification of starters and valves | | Off GasStar site?
Jen/Andy check | | | | Directed inspection and maintenance program | | Check to combine with optical imaging – Jen/Andy | | | | Electric Chemical pumps | <mark>Into V5</mark>
Y | Bruce Gantner | |